The relative roles of DNA damage induced by UVA irradiation in human cells.

نویسندگان

  • Barbara Cortat
  • Camila Carrião Machado Garcia
  • Annabel Quinet
  • André Passaglia Schuch
  • Keronninn Moreno de Lima-Bessa
  • Carlos Frederico Martins Menck
چکیده

UVA light (320-400 nm) represents approximately 95% of the total solar UV radiation that reaches the Earth's surface. UVA light induces oxidative stress and the formation of DNA photoproducts in skin cells. These photoproducts such as pyrimidine dimers (cyclobutane pyrimidine dimers, CPDs, and pyrimidine (6-4) pyrimidone photoproducts, 6-4PPs) are removed by nucleotide excision repair (NER). In this repair pathway, the XPA protein is recruited to the damage removal site; therefore, cells deficient in this protein are unable to repair the photoproducts. The aim of this study was to investigate the involvement of oxidative stress and the formation of DNA photoproducts in UVA-induced cell death. In fact, similar levels of oxidative stress and oxidised bases were detected in XP-A and NER-proficient cells exposed to UVA light. Interestingly, CPDs were detected in both cell lines; however, 6-4PPs were detected only in DNA repair-deficient cells. XP-A cells were also observed to be significantly more sensitive to UVA light compared to NER-proficient cells, with an increased induction of apoptosis, while necrosis was similarly observed in both cell lines. The induction of apoptosis and necrosis in XP-A cells using adenovirus-mediated transduction of specific photolyases was investigated and we confirm that both types of photoproducts are the primary lesions responsible for inducing cell death in XP-A cells and may trigger the skin-damaging effects of UVA light, particularly skin ageing and carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

3-Amino-1,2,4-triazole Limits the Oxidative Damage in UVA-Irradiated Dysplastic Keratinocytes

Reactive oxygen species (ROS) generated by UVA irradiation affect the keratinocyte cell membrane, DNA, and proteins and may cause serious injury to the skin. Treating human dysplastic keratinocytes (DOK) with 3-amino-1,2,4-triazole (AMT), a common catalase inhibitor, induced a compensatory mechanism for the hydrogen peroxide detoxification, which included a rise in glutathione peroxidase and gl...

متن کامل

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and It's Definite Dose Reduction Factor

Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation.In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to cal...

متن کامل

Oxidative DNA Damage Induced by 364-nm UVA Laser in Yeast Cells

The mechanisms of the toxic eŠects of UVA (320–400 nm) irradiation remain unclear. The actions of monochromatic longer wavelength UVA, in particular, have been di‹cult to analyze because of a lack of a powerful light source; however, a UVA laser that can be used for biological studies was recently developed. In the current studies, we examined the eŠects of 364-nm irradiation on yeast cells usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2013